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The scope of this Phase I research was to determine how environmental
risks can be decreased and how the safety of personnel and property can be
increased with offshore pipelines. This work shows how the objective can be
achieved by a better material specification. When a marine pipeline is
accidentally damaged by boat or ship anchor drag or by impact by fishermen
trawl boards, the pipeline gets dented which can cause the line to collapse
and then buckle with the buckle propagating down the line. In the process
the line usually ruptures causing an oil spill or a gas leak. With a proper
specification of the ultimate elongation of the steel, the pipe will stretch
but not rupture during the collapse and buckling process.

Anticipated Results/Potential Commercial Applications of the Research
The Phase I results can be used now as rough guidelines. Phase 2

development work is needed to refine the procedures and for experimental
confirmation of the theory. The anticipated results of the development work
are that the oil, pipeline, and construction companies can use the proce-
dures for improved steel pipe specification and DOI personnel can use the
procedures for advice and counseling to industry. Implementation of the
development work will result in safer pipelines and less environmental risk
at no or negligible additional cost.

DISCLAIMER: The views and conclusions contained in this document are those

of the author and should not be interpreted as necessarily representing the
official policies or recommendations of the Department of the Interior.
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INTRODUCTION

This project was a Phase I research effort performed through the SBIR (Small
Business Innovative Research) Act passed by Congress and administered through the
MMS (Minerals Management Service) in the U.S. Department of the Interior. The idea of
SBIR is to get small business a little more involved in federally funded programs to
expand our general technology base and to provide more jobs by commercial
implementation. The program then consists of initial Phase I research efforts, a more
comprehensive Phase 2 development effort by a few of the most viable participants in
Phase 1, and then hopefully a Phase 3 commercial implementation without any federal
funding.

The scope of this reported research was concerned with both environmental
concern and personnel safety with offshore pipelines. These marine pipelines run
between fixed offshore oil and gas production platforms and from the platforms to
shore. The specific scope of this work was to ascertain considerations to minimize
leaks in offshore pipelines.

We occasionally experience pipeline leaks due to a large variety of reasons és
discussed in the next section. Fortunately, the number of leaks and amount of oil spilled
is extremely small relative to amount of oil handled by marine pipelines. But we should
strive to do better and make the efforts cost effective in the process. For example the
cost of this research work is insignificant relative to the cost for cleaning up any one
large oil spill.

Some of the major sources of marine pipeline leaks are damage by boats
dragging anchor over a line or by fishing trawl boards banging the line. The resulting
ding could initially rupture the line, or damage it so that it later fails when fully
pressurized, or the protective coating could be damaged so that the line fails later by
corrosion.

When an oil line leaks, it temporarily messes up the environment and is
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sometimes bad news for birds and fish - but virtually no danger to personnel will ensue.
thversely, with a gas line leak, there is no detectable damage to the environment, but
if the line were near a platform, it is possible that this could lead to an explosion with
significant loss of life and property.

Our approach here then is to figure out how that we can be reasonably sure
that a damaged line will stretch but not rupture when it collapses. The way to do this is
to first understand the geometry and mechanism of the failure mode of the pipe. Then
we can predict the required elongation or stretch of the steel used in the pipeline.

We have done that in this report With the calculations shown for the
preliminary theoretical procedures. The work shows that we should choose the type of
steel for a particular pipeline based on internal operating pressure of the fluid being
pumped, the external water pressure based on depth from the ocean level down to the
mudline, and the pipe diameter and wall thickness.

It required some rather fancy engineering as outlined in this report to
accomplish the objective. But the work was boiled down to a simple equation that can
be used for steel mill specifications on a tentative basis. Experimental work will be
required for verification and to improve the approximations.

Seems like the work discussed in this report should be of interest to various
design engineers in several segments of industry such as oil and gas companies, marine
pipeline construction companies, and the pipeline operating companies. More
importantly this work will give MMS personnel a better understanding of pipeline failure
mechanisms. With this additional knowledge MMS personnel should now be in a position
to offer advice and counsel to industry during the review stages for new marine pipeline
construction.

For the benefit of those readers that are not involved in marine pipeline work,
a schematic of a barge depicting the system used to construct an offshore pipeline is
shown in Chart 2-1. Drawing on our previous marine pipelay design work, the specifics
for an example to show the influence of water depth is shown in Chart 2-1 with the

results from the structural analyses shown in Chart 2-2.
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OIL SPILL STATISTICS

From MMS data (Chart 3-1), there were 30 major spill incidents (greater than
238 bbl/incident) in the years 1964 through 1981 in the OCS Gulf of Mexico from all
sources. In this time frame the number of offshore structures (platforms and satellites)
increasedfrom 1,100 to 2,744 (average 1,922) while annual oil production increased from
115 to 228 million bbl (359 peak in 1971) or accumulative 4,632 million bbl. These
numbers equate to average 175 bbl spilled per structure and 13,791 barrels produced per
bbl spilled.

In their very comprehensive treatise published Dec 77 on offshore pipeline
safety practices, Funge et al (F5) collected extensive data on causes and volumes of oil
spills. Their summaries are given in attached Charts 3-2 through 3-11 for the
convenience of the reader with only the following brief comments. As an aside,
extensive data is available from DOI and DOT for an update but the given information
was considered sufficient for present purposes.

In all of the major accidents on the OCS involving 1,000 bb! or more spilled in
the years 53-72, only four of the 43 total incidents were caused by pipeline ruptures but
these four incidents accounted for over half of the oil spill volume (Chart 3-2). In the
years 67-76, there were 22 pipeline spills of 50 bbl or more in OCS waters, one due to
corrosion and six due to external impact of anchor drag, dredging or trawl boards (Chart
3-3). In the years 71-75 on the Gulf of Mexico OCS, oil spills of 50 bbl or less due to
pipeline leaks and ruptures accounted for about 10% of the total number of spills and
about 12% of the spill volume (Chart 3-6). The statistics on liquid pipeline spills
onshore and offshore U.S. for the years 68-76 are given in Charts 3-9,10 with similar

tabulations for gas pipelines in Chart 3-11.
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CODES AND REGULATIONS

| As shown by the most current Code of Federal Regulations (Cl1), the maximum
design factor for offshore oil or gas pipelines is 0.72 based on SMYS, or a 1.4 safety
factor. This also corresponds with the minimum safety factors specified in the various
codes used in West European countries (P8), as shown by Chart 4-1.

The minimum test pressure is then taken as the sum of the external pressure
plus 1.25 times the internal design pressure, IDP. The maximum internal pressure minus
the minimum external pressure gives the internal design pressure. This API criteria
(Al4) is based on the ANSI piping standards (A8,9).

After a marine pipeline is installed and in operation it can incur damage due to
several causes. Some areas in the Gulf of Mexico have big problems of soil fluidization
and then transport with agitation by storm waves. Subsequent soil depressions leads to
pipe bridging and the pipeline can then fail in fatigue because of the induced
oscillations (H6).

In areas of heavy fishing activity the pipeline can become dented as trawl
doors hit the line (G3). For this reason most offshore areas with fishing activities now
have some type of pipeline burial requirement (M8), as shown in Chart 4-2.

At the present time neither DOT nor MMS have any regulations regarding
allowable stress and strain during pipelay or repair operations. The applicable codes
and regulations are concerned with adequate structural integrity of marine pipelines
under stated normal operating conditions. As a consequence there are no codes or
regulations that indicate desirable material property magnitudes to insure dry versus

wet buckles or collapse.
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DESIGN FOR OFFSHORE PIPELINE CONSTRUCTION

| Some of the most important factors to be considered for laying offshore
pipelines have been studied using a finite element program and these results were
published in the literature (B5-B12). In another published study (B4) the available
literature was reviewed and equations summarized for elastic hydrostatic collapse with
and without out-of-round, plastic hydrostatic collapse pressure, and elastic buckling
with combined loads. Design Chart 5-1 gives the maximum allowable bending moment
as a function of water depth, and pipe diameter, wall thickness, and yield strength.

In a related paper (B22) the material properties as specified by the API Codes
were summarized (Charts 5-2,3) for convenient reference during design. That paper
also gave a number of other convenient design charts such as specific gravity for various
sizes of pipe and concrete thickness, allowable water depths as a function of pressure,
flexure, pipe dimensions, coating thickness, etc.

Haagsma (H8) reported some theoretical procedures to account for pipe out-
of-roundness and to show the interaction between external pressure and either pure
tension or bending. The essence of that work is given in Chart 5-4. This shows that the
influence of out-of-round is greater for the lower D/t values, and that the allowable

pressure is reduced more with pure line tension than with bending.
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PIPE PROPERTIES
| When trawl doors strike a marine pipeline for example, it would be more
desirable that the pipe dent rather than crack. From this viewpoint a material with a
higher toughness would be desirable. Charts 6-1,2 show the variation of charpy values
reported by two manufacturers, Italsider (C6) and Kawasaki (Ul), of API 5LXX70 pipe.
Note that the charpy values increase with decreased sulfur content. While API specs
give the minimum requirement for percent elongation in two inches, values of 36 to
44% have been reported in the literature (V1) for grades X65 and 70.
The design properties of API pipe are given in Charts 6-3,4. Pipe volumes are

given in Chart 6-5.
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PIPE COATINGS AND CATHODIC PROTECTION

Marine pipelines are normally protected with an organic coating in
combination with cathodic protection. A concrete coating is then applied over the
corrosion protection coating for weighting and stability purposes.

The six most often used corrosion protection coating materials are coal tar
enamel, asphalt enamel, asphalt mastic, thin film powdered epoxy, bonded polyethylene,
and various tape wraps. A survey of pipeline coatings was performed by O'Donnell (01)
and his results are shown in Chart 7-1. This work shows that coal tar enamels are most
often used. Adhesion was considered slightly more important than resistance to
cathodic protection, and penetration resistance the third most important coating
property. The tabulation of physical properties of pipeline coatings prepared by
Askheim and Eliassen (A19) is given in Chart 7-2.

The current requirements and the capacity of anodes per NACE and discussed
by Rizzo (R6) are given in Chart 7-3. Using DNV rules (Norway), Mollan and Eliassen
(M9) reported a design procedure for spacing anodes on a marine pipeline and their

technical data is given in Chart 7-4.
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VALVES TO REDUCE OIL SPILL

When a marine pipeline fails it is possible for a buckle to propagate. Whether
a wet buckle (pipe wall ruptures) or a dry buckle results depends upon the material
properties of the pipe. As a contingency to minimize wet buckle oil spills, remote
actuated valves have been installed in marine pipelines during pipelay operations. But
sometimes a pipeline rolls as it is going over the stinger and the valve operator could be
orientated upside down in the mud after being laid. In that case the valve could not be
remotely closed.

If it is known sufficiently ahead of time that a very severe storm is going to
pass through a pipeline lay barge location, the normal pfocedure is to abandon the
pipeline. After the storm has passed the pipeline is retrieved and pipelay operations
then continued. But this is an expensive operation. If the weather prediction is for a
relatively mild storm, it may be decided to cease lay operations but to hang on to the
pipe in the tensioners. This or relatively large vessel heave values can cause some small
amount of plastic strain in the line due to dynamic flexure. Some weather design
criteria for various offshore areas of the world are given in Chart 8-1.

As shown schematically in Chart#-3the reason that a pipeline will roll during
lay operations is because the total energy of elastic and plastic strain in the pipeline is
reduced with torsional rotation. The problem has been solved for a 60 ksi yield steel
using the constructed stress strain diagram and the computed strain stress equations
shown in Chart 8-2. Knowing the anticipated pipeline roll, the valve can then be placed
in the joint at a prescribed angle so that it will be vertical when it reaches the mudline.

An operations chart for this purpose is shown in Chart 8-3 for a 60 ksi steel.
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NONLINEAR STRESS-STRAIN RELATIONS

An accurate prediction of pipeline collapse must take into account the
nonlinear stress-strain relation of the steel in the plastic response after the yield
strength has béen exceeded. This behavior is peculiar to each type of steel and must be
determined from uniaxial lab tests. A procedure and the results are given here for use
in preliminary work when the actual mechanical properties of the steel being considered
has not been tested. - To do this we have utilized the reported tests by Brittain (B13) on
a variety of different steels. Importantly, Brittain gave true rather than engineering
values, and the essence of his work is summarized in Chart 9-1.

Most labs usually report their material property tests in terms of engineering
values. Engineering stress is the force at any time during the test divided by the
original cross sectional area of the test speciman. True stress is the applied force
divided by the true necked down area at that time, so true stress is greater than
engineering stress values in the plastic response. The true strain is the differential
stretch divided by the instantaneous stretched length rather than the original length of
speciman used to calculate engineering strain. Hence the true strain is less than the
engineering strain in the plastic response. The equations for converting between true
and engineering values as well as the definition of the strain hardening coefficient are
given in Chart 9-2, and the significance of the differences is shown in Chart 9-4.

What we have done is mess around with the data in Chart 9-1 which is shown
to be linear plots on log-log paper. Taking the standard equation functional for this
type of relationship and the API definition of 0.5 percent strain at yield leads to the
data points in Chart 9-3 for the constants K and n.

An example comparison is shown in Chart 9-4. The derived strain hardening
coefficient using Ref. VI data is 0.15 versus 0.17 using our linearized coefficients shown

in Chart 9-3.
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ELASTOPLASTIC BEAM BEHAVIOR
| To get to the problem of determining maximum strain in a pipe at collapse, we

have to know a little bit about plastic structural analyses. In our first approximations
we will also usé beam theory. For the benefit of those engineers that do not perform
plastic structural analyses every day, the basic theory for our procedures is given here.

Chart 10-1 gives the equations for various load types and beam end conditions
for use in regular elastic analyses. When a sufficiently large moment is applied to
exceed the yield strength, vthe beam moment versus curvature becomes nonlinear as the
so-called plastic hinge point is formed as shown in Chart 10-2. The problem with all of
the good textbook theory on plastic analyses is that the strain theoretically becomes
infinite when the fully plastic moment has developed. That is no problem in ordinary
structural analyses where the induced stresses are compared with allowable code
stresses. But here we are interested in the strain values for use in material
specifications and we cannot massage infinity.

Chart 10-3 gives the derivation of the fully plastic moment for a beam having
a rectangular cross section. The results show that the fully plastic moment is 1.5 times
the value of the maximum elastic moment. While the elastic moment varies nonlinearly
along the beam length, Chart 10-4 shows that the moment varies liﬁearly for all
practical purposes from the point of maximum elastic load to the point of maximum
plastic moment at the ends of a fixed end beam with uniformly distributed load. This is
a key input to our collapse pressure derivation to get the maximum induced strain.

Chart 10-5 gives the derivation of the extent of plasticity at a hinge as a
function of the beam curvature. These relations are required to study the intermediate

stages of pipe collapse.
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ELASTIC AND PLASTIC STRAIN ENERGY

The general three-dimensional equations of elasticity in rectangular co-
ordinates are given in Chart 11-1. This includes the conversions between stress and
strain using Young's modulus and Poisson's ratio for the three dimensional as well as the
plane stress and plane strain cases.

The amount of internal energy stored in the structure (beam, shell, etc.) is
called the strain energy. Chart 11-2 gives the total strain energy in terms of stress and
in terms of strain for the general three dimensional stress state as well as for the case
of plane stress.

The thing gets a little more complicated when the yield stress is exceeded.
The strain energy is then the sum of the stored elastic energy plus the dissipated plastic
energy. Chart 11-3 gives the equation of the plastic strain energy for a beam in terms
of strain hardening coefficient of the material.

The resulting integral is not common. One way to solve the functional is to
use a binomial expansion, multiply the terms, combine the units, then integrate each
resulting integral in the sum of terms. The series of integrals is continued until the
desired degree of accuracy is obtained, to wit, addition of remaining integrals beyond
the truncation point would not significantly effect the results. This is not amenable to
hand calculation but the problem could easily be handled with a computer when doing

final design work.
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VON MISES AND AISC FAILURE CRITERIA
| The six commonly accepted bases of material failure are (1) maximum

principal stress, (2) maximum shear stress, (3) maximum principal strain, (4) maximum
shear strain, (5) total energy, (6) distortional energy. These failure modes are listed in
order of ease of usage and hence engineering popularity. However, for structures under
three dimensional stress, the precision and applicability would be given in reverse order.

The ‘equations for the distortional energy basis, more commonly called the Von
Mises criteria, for a triaxial stress state are given in Chart 12-1 in terms of stress and
in terms of strain for elastic and plastic analyses. This shows that the equivalent
uniaxial yield strain allowable is 33% greater in plasticity relative to an elastic state.

The pipeline considered in triaxial state versus biaxial stress is explained in
Chart 12-2. This shows the allowable stress by Von Mises would be about 26% greater
than permitted by the simplified ordinary analyses.

A laid section of pipeline is not free to expand longitudinally and the effect of
this restraint is studied in Chart 12-3. Using the AISC Code procedures, the restraint

would have negligible effect in contradistinction to the Von Mises approach.
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COLLAPSE MODES AND PROPAGATION PRESSURE

| When a pipeline has a dent in it or if the pipe is sufficiently out of round, then
at a certain pressure the pipe will plastically deform radially inward and buckle
longitudinally. If the pressure load is greater than the amount of stored elastic energy
plus dissipated plastic energy, then the buckle will propagate along the length of the
pipeline.

The amount of pressure to make the buckle propagate depends upon the failure
mode. With a constant wall thickness along the pipe the collapsed state will look sort
of like a figure 8. The derivation of an equation to predict the propagation pressure for
an eight collapse is given in Chart 13-1.

If a pipeline is banded such as with a buckle arrestor ring, the pipe is then
restrained from failing in the eight collapse. As the buckle propagates it then jumps
through an unwelded arrestor ring in the collapse mode shown in Chart 13-2 and here
called a nest collapse. As shown by the derivation in Chart 13-2, the propagation
pressure for a nest collapse is approximately two times the propagation pressure for an
eight collapse.

The various computed pressures for a couple of laid pipelines are shown in
Chart 13-3 for examples. The computed pressures in psi for the first example were 223
due to external water pressure at the 500 foot depth, 920 for failure by external
pressure, and 109 for a buckle propagation in an eight collapse mode. This means that
if the pipe is sufficiently dented to cause a buckle in 500 feet of water, then without
the use of buckle arrestors the buckle would progress along the length of the pipeline
until a depth was reached where the propagation pressure is less than the water

pressure, or to a water depth of 500 X 109/223 = 244 feet.
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MAXIMUM STRAIN IN COLLAPSE MODE

It is now time to combine all of the previous information given to come up
with something we can work with. The procedure is to equate the external work
function with the internal strain energy. The elastic internal strain energy stored is
very small compared to the plastic internal strain stored dissipated so we will neglect
the elastic energy here. Chart 14-1 gives the relation for the external work after a
complete figure eight collapse for one-fourth of the pipe.

Chart 14-2 gives the assumed strain variation at each quarter point or plastic
hinge formed in the pipe after complete collapse. This strain functional is given in
terms of the variation radially from the neutral axis and circumferentially from the
hinge point. The functional is then integrated across each side of the equivalent beam
at each end of a quarter section of the pipe with the results given in Chart 14-3.

The external work from Chart 14-1 is equated to the plastic strain energy
from Chart 14-3 to obtain the relation of the expected maximum strain at the hinge as
shown in Chart 14-4. Since the yield stress appears in both the work and the energy,
this term drops out so the maximum strain is not a function of the yield strength. After
the biaxial effects are taken into account using Von Mises strain criteria, the final
result is that the maximum estimated strain at collapse is 12.75 divided by the pipe
diameter to thickness ratio. Simple enough.

Using data from the published literature on a couple of laid pipelines, the first
shows a 30.7% strain requirement and the second shows a 62.5% strain requirement.
These are the ultimate strain values the material should have as determined by a
uniaxial tensile test so that the installed pipeline completely failed in a figure eight

collapse will have stretched without rupture.
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BUCKLE PROPAGATION AND ARRESTORS

' The ratio of critical pressure for collapse due to external pressure on a round
pipe compared to the buckle propagation pressure is discussed in equation form in Charts
15-1,2. This shows why a buckle in a pipeline will propagate until much more shallow
water depth is reached or until the buckle runs into a thicker section such as at a buckle
arrestor or a line valve.

In practice the critical/propagation ratios are lower than the theoretical
predictions because the formulas are for perfectly round pipe. Some out-of-roundness is
allowed for the steel mill per ASTM and AISC codes since it is not practical or even
possible to find perfectly round pipe.

The pipe buckles and the buckle propagates because of gross out-of-round or a
ding due to unplanned damage to the pipe as previously discussed. The radial velocity of
the buckle propagation is a function of the pressure head, i.e. the difference between
the external water pressure and the propagation pressure as illustrated in Chart 15-3.
The longitudinal velocity of the buckle propagation is a function of the yield stress, pipe
diameter, and pipe wall thickness. The buckle shape will find a configuration for
minimum plastic strain energy per unit length of additional deformation.

The size and type of buckle arrestor ring to use depends upon technical and
economic considerations. Normally, a welded arrestor is better than a grouted arrestor
since the buckle can jump through the grouted arrestor as shown in Chart 15-4.
However, grouted arrestors would be appropriate if the jump through pressure exceeded

the external water pressure, i.e. for the case of very shallow water depths.
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CONCLUSIONS

1 - ’

This project was concerned with both pipeline safety and environmental
considerations by decreasing the possibilities of offshore pipeline leaks as a result
of damage to the laid line due to anchor drag, dings by fishermen trawl boards, etc.

The approach was to determine a suitable minimum mechanical property
specification, to wit, ultimate elongation, so that a damaged pipeline could
collapse and in the process, stretch but not rupture.

If the pipeline does not rupture at collapse, this will preclude oil spills and
consequential damage to the birds, the fish, and the beaches. For the case of gas
pipelines where failure has inconsequential environmental effects, a collapsed gas
line without rupture near an offshore platform or terminal facilities greatly
improves the safety for people and property.

Using some simplified assumptions in this Phase I work, the results were that the
minimum ultimate elongation as determined from a uniaxial tensile test on the
material to be used in a planned pipeline should be equal or greater than about 12.7
divided by the diameter to thickness ratio of the pipe.

The greater the strain hardening coefficient of a candidate steel, the more the
determined minimum ultimate elongation can be decreased as long as the Charpy
or Izod values are not adversely affected.

The results given in this report can be used as guidelines now. Before
implementing the results into a final specification or technical requirement, the
approach should be refined by including the effect of the strain hardening
coefficient, etc.
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RECOMMENDATIONS

l. .

2.

3.

3.

Laboratory tests should be performed to confirm the theory presented in this
report.

To reduce the cost of the lab tests, this should be done primarily with line loads
applied to sections of pipe with only a few of the more expensive tests performed
using external pressure loading.

Similar theoretical treatment of line load application will be required to confirm
the theoretical line load/pressure load analog, the experimental line load/pressure
load analog, and finally the theoretical pressure load/experimental line load analog.

The required ultimate elongation properties should be discussed with personnel in
the metallurgical labs of several steel pipe companies to ascertain whether or not
they have a steel chemistry formulation that has the desirable characteristics and
which can be produced at negligible additional cost.

Complete mechanical property evaluations and test results should be obtained from
the steel mills, including minimum yield strength, maximum tensile strength,
ultimate elongation, strain hardening coefficient, and charpy results for candidate
steel comparisons.

Equations should be developed for determining the conditions of suitability of the
less expensive type of grouted buckle arrestors.

Equations should be developed for determining the economics and cost
effectiveness of both grouted and welded buckle arrestors.

The above should be performed with the objective of improving safety to personnel
and property as well as achieving decreased risk of environmental damage at
minimum or no additional costs by working smarter with a better technology base.
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Symbol Variable
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Subscripts

a
c
d
e

arrestor
critical

dissipated
external

area
one-half of pipe wall thickness
pipe diameter

Young's modulus of elasticity
gravitational constant

water depth

arrestor wall thickness
area moment of inertia
length of pipe secant
moment

strain hardening coefficient
pressure

radius of curvature

pipe wall thickness

volume

velocity

external work

radial coordinate
circumferential coordinate
area section modulus

propagating buckle angle
Poisson's ratio

stress

density of material
strain

internal strain energy

oz

initiation
longitudinal

nest propagation
propagation

<gcm
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Typical
Units

sq. in.
in.

in.

psi
ft./sec.?

ft.

in.
in#
in.
in.-1b.

numeric

psi
in.
in.
Cu. in.

in./sec.
in.-lb.
in.

in.

in.3

deg.

numeric

radial

psi
pef
in./in.

ino-lbo

ultimate

water
yield
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MARINE PIPELAY—SCHEMATIC AND EXAMPLE VARIABLES CHART 2-I
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Calendar

OIL SPILL INCIDENTS OF 238 OR MORE BARRELS

0CS-GULF OF MEXICO

CHART 3-|

Number of Annual OCS
Year Incidents 0i1 Spilled Structures 011 Production
1964 5 14,928 barrels 1,100 115 million barrels
1965. 2 2,188 barrels 1,200 136 million barrels
1966 0 None 1,325 175 million barrels
1967 1 160,639 barrels 1,450 206 million barrels
1968 1 6,000 barrels 1,575 250 million barrels
1969 4x 10,624 barrels* 1,675 285 million barrels
1970 3 83,895 barrels 1,800 312 million barrels
1971 1 450 barrels 1,891 359 million barrels
1972 0 None 1,935 356 million barrels
1973 4 22,175 barrels 2,001 342 million barrels
1974 2 22,046 barrels 2,054 316 million barrels
1975 0 None 2,079 288 million barrels
1976 2 4,300 barrels 2,086 281 million barrels
1977 2 550 barrels 2,248 250 million barrels
1978 0 None 2,327 255 million barrels
1979 1 1,500 barrels 2,420 246 million barrels
1980 1,456 barrels 2,554 232 million barrels
1981 1 5,100 barrels 2,744 228 million barrels**
Total 30 335,851 barrels 2,744 4,632 million barrels

*Revised 3/82 - Previous value, for 1969 30,024 barrels, included two spills

which were not in OCS Gulf of Mexico.

**preliminary value

SOURCE : MMS |, NOLA



MAJOR ACCIDENTS O

N THE U.S. OUTER CONTINENTAL SHELF

{ 1953 - 1972}

CHART 3-2

RESULT CAUSE
Drilling Production | Pipeline Collision | Weather |Total
Accident Affecting:
01l 0 3 4 1 3 11
0i1 and Gas 2 7 0 0 0 9
Gas 17 2 0 0 0 19
Other 0 3 0 1 0 4
Total 19 15 4 2 3 43
(a)
011 Spills of Above: . (b) :
Number 2 10 4 1 3 20
Volume-
(Thou. Barrels) 18.5-780| 84-135.4 175 2.6 9.2-9.7} 290-1,100
Tragedies:
Deaths 23 33 0 0 0 56
Injuries 7-8 91-100 0 0 0 98-108
Fires 7 12 0 1 0 20
Major Damage
to Platform Rig 4 9 0 2 0 15
Duration 2 hrs = {10 min.- 1-13 days| 1 day 1-3 days{ 10 min-
5.5 mos. 4.5 mos. 5.5 mos.

(a)
(b)

October 15, 1957
March 12, 1968

February 11, 1969
December 16, 1965

Four pipeline spills are:

West Delta Blk. 73

So. Timbaljer Blk. 131
Main Pass Blk. 299
Santa Barbara Channel

spills of about 1,000 barrels or more in 0CS waters

160,639 bbls.

6,000 bbls.
7,532 bbls.
900 bbls.

REF. F5,02
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CHART 3-4

MATOR U.S. OFFSHORE otl SPILLS FROM PIPELINES
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Causes of 0il spills of 1-50 barrels, 1971-75,

Gulf of Mexico 0CS

CAARY 3-5

T~
Number Total - Volume (bbl) per spp
Cause of volume Average Maxi- Wiy
Spills (bb1) mum My
Pipeline & Pump Failure:
| Pipeline leaked.....ueuvnrnnnn..... 63 303.5 4.82 35 I
| .
| P1pe]1ne ruptured........co0innn... 20 161 8.05 32 2
Discharge or transfer line ruptured _
or coupling failed............... 54 237 4.39 27 1

Pipeline pump fajled............... 42 211 5.02 20 1

Pig trap leaked.......coovvvinnn.. 12 35 2.92 10 1

High-low pressure sensor failed.... 3 18 6.00 8 4

Fuel line leaked..........o.vutn... 2 3 1.50 2 1

Pump capacity exceeded............. 1 2 2.00 2 2

Miscellaenous........ocvvnenunn.... 39 152 3.90 12 1

TOTAL.....cevun... G eeseenaeeanos 236 1,122.5 4.76 35 ]
Production Platform Equipment :

Malfunction or Misuse.............. 536 2,286 4.26 50 ]
Drilling & Workover Mishaps.......... 20 64.5 3.23 10 ]
Miscellaneous Equipment Failures _

& EmpToyee Errors...........oveenn. 84 440 5.24 36 ]
TOTAL et ittt eenereenreneeneneneean. 876 3,913 4.47 50 1

REF.D3,¥5



CHART 3-6

0CS GULF OF MEXICO Ol seu.\.s_) 50 BARRELS OR LESS

1971 1872 1973 1974 1975
Total volume of spills .
(bbls) 104 68 87 117 89
Total number of spilis 12 12 17 17 25
Average volume per spill :
(bb1s) 8.67 5.67 5.12 6.88 3.56
% Change in Average Vol. _
from Preceding Year == =34.6% -9.7% +21.3% -48.3%
Cause | No. of Spills Total Volume (bbls)
Pipe1fne leaks 63 ' 3é3.5
Pipeline ruptures 20 161
83 464,5
Pipeline spills as % of total # of spills = 9.5%
Pipeline spill Vol. as % of total spill Vol. = 11.9%
Quantity per pipeline spill, average per spill = 5.6 bbls,
Quantity spilied from pipelines, average per year = 93 bb]s.

REF. F5



CWART 3-7

CAUSES OF OIL SPILLS OF MORE THAN 50 BARRELS, 1971-75

GULF OF MEXICO OCS

Number Total S
Cause of Volume Volume (bbl) per spily
Spills (bb1) Maximum Minimum
Pipeline leaks and breaks 7* 27,396 . 19,833 70
Production-platform equipment _
malfunction or misuse 6 10,925 9,935 75
Drilling and workover mishaps 0 0 0 0
Barge spill (leaks; or oil
transfer) : 2 7,100 7,000 100
Workboat spillage during
unloading of diesel fuel; or _
coilision with platform 3 506 240 100
Other causes 2 320 200 120
Total 20 46,247 - -

*Spills in Federal waters of Gulf of Mexico OCS:

Nov. 14, 1971
Dec. 17, 1971
June 26, 1972
May 12, 1973

Eugene Is

West Delta Blk.

West Delta Blk.
West Delta Blk.

April 17, 1974
May 21, 1974
Sept. 9, 1974

~No gt P W~

Eugene Is. Blk.
Eugene Is. Blk.

Main Pass Bilk.

29 70 bbls.
. Blk. 238 80 bbls.
79 100 bbls.
73 5,000 bbls.
317 19,833 bbls.
33 100 bbls.
73 2,213 bbls.

27,396 ‘bbls.

REF D3,F5
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PIPELWNE CODE COMPARISONS WiTH WEST EUROPE COUNTRIES

Gas Pipe

Line Code Comparisons

CHART W ~|

Design on Min. Allowable Normal
or Nominal Wall Excess Main Line Temperature
Code Safety Factor Thicknesa Pressure Valve Frequency Special Remarks nge
ANSI l4to 25 Nominal. But may | Lesser of, 10% | Every § to 20 miles | Safety factor varied as function of
. B31.8—1968% be corrected by de- | overpressure, or | depending on loca- | building density.
sign factor F. pressure to pro- | tion.
duce 75% of
yield.
Institute of 1.4 or 1.67 Minimum 10% Every 10 miles in | Both codes specify reduction in —~13°F
Petroleum (U.K.) overpressure open country, and | safety factor as function of pressures to
: at special locations | and buildings proximity following 248°F
. — principal of USSR National Gas
British Standard 1.4 or 1.67 Minimum 10% Every 10 miles in | Code (1960) but ANSI B31.8 and ~13°F
Code of Practice surge opén country, and | IGE procedures accepted as optional. to
CP2010 Part 2 at special locations 250°F
1970.
Institution of 1.40 in open Minimum None Not greater than 10 | Use of 0.72 stress factor limited to
Gas Engineers country 2.2 close miles in open coun- | population density of one per acre.
(U.K) to inhabited build- try. Spacing re- | 0.55 is more common 0.40 in urban
ing. duced in built-up | areas. Pressures also limited by
areas. building proximity.
Belgium 1.48 to0 1.34 Norninal 10% At branches and
overpressure other appropriate
locations
International 1.40 to 2.5 but re- Nominal None 30 km maximum ex- | Adopted by EEC committee on gas
Gas Union Safety | striction on yield cept in desert re. | (1965). Based on ANSI B31.8 and
ode to uitimate ratio. gions, USSR Codes which differ primar-
ily on area classification method.
Liquid Pipe Line Code Comparisons
Designed on Allowable Normal
Minimum or Excess Main Line Temperature
Code Safety Factor Nominal Wall Pressure Valve Frequency Special Remarks nge
ANSI At river crossings and as —20°F
B.3l.4 1.4 Nominal 10% ' dictated by the terrain. to
1966 surge ' 250°F
Institute To provide 2 maximum 13°F
of Petroleum 1.4 Minimum 10% drainable length of 10 to
KD overpressure miles 2nd at crossings. 248°F
RFF & DIN Dependent on material, fatigue
2413 1.7 average Minimum None and temperature conditions SF
(GERMANY) may increase to 2.5.
AUSTRIAN
ASSOCIATION According to terrain to —13°F
OF THE 1.4 Minimum 10% limit the amount of po- to
MINERAL OIL - overpressure tential spillage. 248°F
INDUSTRY
Belgium 1.48 to 1.34 Nominal 10% At all branches and as re- —13°F
overpressure quired. ’ to
248°F
French 1.22 to 2.28 Minimum 10% VYield valves 10 which SF applies up to 248°F
surge determined on different princi-
ples to ANSI.
British Standard 1.4 Minimum 10% To provide a maximum —13°F
Code CP2010 surge drainable length of 10 to
Part 2 1970 miles and at crossings. 250°F
E.E.C. Draft Normal areas 1.35 Minimum 10% To limit drainable lengths | SF may be varied by the “Com- —25°C (13"5)
to 1.6 Desert area surge as dictated by terrain | petent national authority™. +120°C (248°F)
1.22 but kept to minimum.

REF P8



Offshore pipeline burial requirements

Country/Agency

Applicahle code

Requirements

1. UNITED STATES

o Department of
Transportation
{DOT0ffice Pipeline
Safety Operations
(0PSO}

e Department of
Interior (DO1)
—).S. Geological Survey
(USGS!
—~Bureau of Land
Management (BLM)

49 CFR 192
43 CFR 195

0CS Order 9
43 CFR 2883

Pipeline to be buried below natural
bottom.

No specific requirement,

Pipeline must be buried to 3 ft. below
the natural sezbed out to a water depth
of 200 ft.

2. UNITED KINGDOM
e Department of Energy
{D0D)

Petroleum
Pipeline .
Safety Code
1974

Submarine
Pipeline Act,. -
1975 - . . -

General guidelines for pipe protection.
“The Secretary of State may by regulation
make such provisions as he considers ap-
propriate for the purpose of securing the
proper construction and preparation in
safety operation- of pipelines preventing
damage to pipelines and securing the
safety, heaith  and weifare of persans en-
gaged on pipeline works . . .,

3. NORWAY
o Ministry of Petroleum -
and Energy

o Industry Reccommended

Norwegian
-Petroleum
Directorate

(NPD), Royal
Decrees, 1978

“To the extent }easanable, pipelines shall .

be protected by burial or by other means
to avoid mechanical damage caused by
other activities along the rocte, including
fishing and hunting, shipping, and ex-
pioration of submarine natural resources.
Moreover, the pipelines shall be installed
so as not to damage fishing gear.”

Det norske “The pipeline is to be supported, anchored
Practice Veritas or buried in such a way that under the
(DnV), 1976 assumed conditions it will not move from
its as-instailed position, apart from move-
ment corresponding to permissible defor-
mation, thermal expansion, and limited
amount of settlement after installation.”
4. NETHERLANDS .
o Inspector General of Submarine Requirements for burial in shipping lanes
Mines Pipelines for | or fishing areas to insure safety.
Transport of
Gas, 1976
9. JAPAN

o Ocean Development
Safety Division

Standard for
Safety Con-
cerning oil and
natural gas de-
velopment,
ga:t 2, Volume

General guicelines provided for safety and
pipeline stability. However, past experi-
ences has shown that severe burial re-
quirements and possible backfill can be
imposed for pipelines crossing areas of
fishing activities.

6. AUSTRALIA
e Standards Association of
Australia

Oraft-Australian
Standard Rules
for Submarine
Pinelines,

1974

No speciﬁé requirement for burial. Sec-
tion 5.7—Burying states: “The location
of underwater obstructions intersecting

the ditch route should be determined in .

agvance of construction activities to pre-
vent damage to such structures. A diver
or television inspection shall be made
of the ditch ahead of laying operations
to insure that the specifications are met.”

REF. M&
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PROPERTIES of FERRITIC X70 PIPE

1 (a) Tensile Strength s LONGitUGIiN % 45 (b) Yield Strength
fO/n 40._ ¢=====3 Transverse 40 Jd
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- - It
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PROPERTIES OF SAW X70 PIPE

Specification: API 5LXX70
Dimensions: Plate—19.5 mm (0.77 in.) x 436 cm
(171.5 in.)
Pipe—!1.42 ¢m (56 in.) OD x 19.5 mm
(0.77 in.) WT

Design Temperature: — 60° C (—76° F)

Typical chemical composition

c St | Mn P S Nb | CE* Remarks

Ladle analysis (%)... 0.10 0.2511.53{ 0.014 | 0.006 | 0.043 | 0.38 | Other microallay

elements are aiso
Check analysis (%5)... 0.10 {1 0.26 | 1.54 | 0.013 ] 0.005 | 0.051 | 0.38 } added.

*CE = &+ Mn/6 + (Cr + Mo + V)/S + (Cu + Ni}/15
Tensile test resuits:

‘ YS ksi (kg/mm?) TS ksl (kg/mm?) ‘ YR (%)

74.4 (52.5) 90.2 (63.4) 83
78.2 (55.0) 93.9 (66.0) 83
70.0 (49.2) min. 82.0 (57.6) min, 90 max.

+20.0k yD=3.5%
+17.5F yD=3.0%
+~15.0 um%
+12-2 YO=2.0%

=+10. S
/O=1.5%
/0 S

50 F 0=1.0%
+25F y0=0.5% 70 80 30
0

25k 90 35 50 &te YS (kpsi)
-50

-7.5
-10.0
-12.5

AY.S. (kps

Difference in vyield stress between pipe and plate
plotted against yield stress of plate as function of t/D.

100

FETTRTU SET T S ST U TR MU S S WA S s W

qQ 0.008 0.010 0.015 0.020 0.025
Suifur, %

Effect of desulfurization on transverse Charpy

Absorbed energy

CHART G0 -2

Test tempaerature {°F)

ical properties.
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CHARY (-3
DESIGN PROPERTIES oF APX 5L, 5LX PlPE 5, Z=20 INCH DIAMETERS

uommn Ao b b o AREAS and WEIGHTS.

INSIDE _
piee sze . 1 "g;p::'p piam- | o SURFACE AREA |  Cross-Sectionol WEIGHT of
N iFl- £TER S '
 outsioe _CATION | T :::t : PIvE | AT
A,D‘lfﬂi_“ﬂ, | numeeR S S P | _ i 1
" inches . i inches X | per 8t in. . | per ft | per f
. - 4 | A , et
2 D= 2375 5L .083| 2.209 52.60] .622) .578] .598| 3.83| 2.03 1.66] .81 3930 .33
3 5L .156( 3.188 | 328.5 916| .835| 1.639| 798| 5571 346|118 | 230 | 1.31
5L .250! 3.000 | 243 916| .785| 2.553| 7.07| 8.681 3.06{1.15| 339 | 1.94
D = 3.500 S5 .281| 2938 | 2189 916| .769| 2.842] 678 | 9.66/ 294|114 | 371 1] 212
3]/ 5L .125| 3.750 | 741.6 | l.047| .982{ 1.521| 1105| 8171 478|137 | 286 1.43
2 5L 156] 3.688 | 6823 | 1.047| .966{ 1.884| 10.68 | 6.41] 463|136 | 349 | 174
D = 4,000 5L .250| 3.50 5252 | 1.047| .916| 2.945| 9.62| 1001] 417|133 | 520 | 2.60
4 5L | .125] 4.250 | 1387 1.178] 1.113| 1.931| 1397 | 657 6.05|154 | 459! 20
SL .156| 4.188 | 1288 1.178{ 1.096| 2.129} 1378 | 7.24f 5.97| 154 | 503 | 22
D= 4500 SL 172] 4.156 | 1240 1.178| 1.088| 2.339] 13.57 | 795 5.87| 153 | 549 2,
‘ 5L .219] 4.062 | 1106 1.178| 1.063| 2.950] 12.96 | 10.01] 5.61} 152 | - 6.77 | 3.01
5L .083| 5.397 | 4579 1.456| 1.413| 1.420| 22.88 | 483 991|194 | 533 1.92
5L .156| 5.261 | 3992 1.456| 1.375| 2.641| 21.66| 898 9.38|1.91 | 9.66 | 3.47
5 5L .188| 5.187 | 3755 1.4561 1.358| 3.166}- 20.13 | 10.76] 9.15| 1.90 | 11.45 | 4.12
5L .219! 5.125 | 3536 1.456| 1.342| 3.666| 20.63 | 12.46] 8.93| 1.89 | 13.11 4.72
D=5563 5L 281} 5.001 | 3128 14561 1.309{ 4.654{ 1964 | 15.82| 851 1.87 | 16.28 | 5.85
5L 312{ 4.939 | 2939 1.456{ 1.293| 4.714| 19.16 | 16.03 8.30| 1.86 | 17.77 | 6.39
5L .344] 4.875 | 2753 1456 1.276| 5.631| 18.67 | 19.15| 8.08| 1.85 | 19.26 | 6.92
5L .083} 6.459 11.20T) 1,734| 1.691| 1.706] 32.77 | 5.80| 14.19{231 | 913 | 276
5L J125) 6.375 10.50T 1.734| 1.669| 2.553] 31.92| 8.68| 13.82] 2.30 | 13.49 4.07
5L .141] 6.342 11.30T 1.734| 1.661} 2.872| 31.60 | 9.77] 13.68| 2.29 | 15.11 456
é SL I .172] s.281 9.78T} 1.734| 1.644| 3.487| 30.99 | 11.86] 13.42| 228 | 18.17 | 5.49
D= 6.625 5L .203| 6.219 9.30T| 1.734| 1.628] 4.096| 30.38 | 13.93| 13.15|2.27 | 21.14 | 6.38
=6 5L 312] 6.001 7.78T) 1.734| 1571 6.188| 28.28 | 21.04| 12.25| 2.24 | 2091 | 9.33
5L .344| 5.937 7.38T 1.734] 1.554| 6.788| 27.68 | 23.08| 11.99| 2.22 | 33.58 | 10.13
5L .625| 5.375 4.49T] 1.734| 1.407|11.781 22.69 | 40.06| 9.83| 2.13 | 53.60 | 16.18
8 SL .312| 8.001 32.8T | 2.258| 2.095| 8.149! 50.28 | 27.71| 21.77| 294 | 7050 | 16.35
5L 438 7.749 27.9T | 2.258| 2.,029/11.266| 47.16 | 38.30] 20.42{ 2.90 | 94.68 | 21.9¢|
D=18.625 5L .562] 7.501 23.7T{ 2.258| 1.964/14.236] 44.19 | 48.40| 19.14] 2.86 1116.3 | 26.96
5L .344/10.062 | 103.0T| 2.81 | 2.63 |11.246] 79.52 | 38.24] 34.43| 3.68 | 152.43 | 28.36
]0 SL .438| 9.874 93.9T | 2.81 | 2.59 |14.190| 76.57 | 48.25] 33.16 | 3.65 | 189.0 | 35.16
5L 562| 9.626 82.6T | 2.81 | 2.52 |17.988| 72.78 | 61.16| 31.51 | 3.61 | 2342 | 43.5¢
D = 10.750 5L .625{ 9.50 77.4T | 2.81 | 2.48 |19.881| 70.88 | 67.60| 30.69 | 3.59 | 255.8 | 47.59
SL .812| 9.126 63.3T | 2.81 | 2.39 {25.352| 65.41 | 86.20| 28.32| 3.53 | 315.1 | 58.63
12 SL .188{12.374 | 290T | 3.34 | 3.24 | 7.420| 120.36 | 25.22| 52.07| 4.44 | 146.4 | 2297
SL .312]12.126 | 262T | 334 | 3.17 {12.192] 115.49 | 41.45| 50.00| 4.40 | 236.0 | 37.01
D =12.750 5L .750{11.250 | 180T | 3.34' | 2.95 |28.275! 99.40 | 96.14} 43.04| 4.25 | 511.1 | 80.17
5L 28113438 | 438T | 3.67 | 3.52 [12.111] 141.8 | 41.18} e61.41] 485 | 285.1 | 40.73
14 . 5L .344(13.312 | 418T | 3.67 | 3.49 114.758} 139.9 | 50.18| 60.27| 4.83 | 3443 | 49.19
5L 562(12.876 | 354T | 3.67 | 3.37 {23726} 130.2 | 80.67| 56.38 | 4.76 | 537 76.66
D = 14,000 5L .688112.624 | 321T | 3.67 | 3.30 |28.773| 1252 | 97.83| 54.20 | 471 | 639 91.32
5L 812112376 | 290T | 3.67 | 3.24 }33.643| 120.3 | 114.39| 52.09 | 4.67 | 734 | 104.90
1 & 5LX 203115594 | 922T | 4.19 { 408 l10.070| 191.0 | 34.30| 82.70 | 5.58 | 314 | 39.30
5L 562114.876 | 729T | 4.19 | 3.89 {27260 173.8 | 92.67| 75.26 | 5.46 | 813 [101.70
D = 16.000 SL. 625114.750 | 698T | 4.19 | 3.86 {30.190} 170.9 | 102.60{ 73.99 | 5.44 | 894 |{111.70
5L. -812{14.376 | 614T | 4.19 | 3.76 |38.7454 162.3 | 131.70| 70.28 | 5.38 |1121 |140.10
SLX " 219117.562 | 1671T | 471 | 4.60 {12230} 2422 | 41.60/ 1049 | 6.29 | 484 53.70)
18 5L .281|17.438 | 1612T | 4.71 | 4.57 |15.642| 238.8 | 53.18/1034 | 6.27 | 614 68.24!
D 5L .344/17.312 | 1555T | 471 | 4.53 {19.081] 235.4 | 64.88/1019 | 624 | 744 82.67
= 18.000 S5LX . 406/ 17.188 | 1500T | 4.71 | 4.50 |22.410( 232.0 | 76.30/100.5 | 6.22 | 869 96.60
—_— SLX 469/17.062 | 1446T | 4.71 | 4.47 |25.830| 229.0 | 87.80{ 99.0. | 6.20 | 993 |110.40
5L - .281/19.438 | 2775T | 5.24 | 5.09-|17.408| 296.8 | 59.19/128.5 | 6.97 | 846 | 24.65
20 5L .344119.312 | 2686T | 5.24 | 5.06 {21.243| 2929 | 72.23|126.8 | 6.95 |1026 |102.60
A S5LX. .406119.188 | 2601T | 5.24 | 5.02 [25.000| 289.2 | .85,00| 125.2 | 6.53 {1200 |120.00
D = 20.000 SLX 469119.062 | 2517T | 5.24 | 4.99 {28,780} 285.4- |. 97.80| 123.6 | 6.91 {1373 |137.30
SL .688/18.624 | 2241T | 5.24 | 4.88 [41.742] 272.4 | 141.92| 117.9- | 6.83 {1949 |194.90
5L -} 750{18.500 | 2167T | 5.24 | 4.84-145.357| 263.8. | 154.20{ 116.4 | 6.81 |2105 |210. sd

% T= THouSANDS M = MILLIONS REF pg



DESIEN PROFERTIES oF APL 5L,5L% PIPE, 22-48 INCW DiameTers  CHART 6-Y4

NOMINAL ~ ~ . R INSIDE RADIUS
. PIPE SIZE APL

DIAM. | surrace aREA | cross-Sectional | WEIGHT of - | of
ond SPECIFI- ETER

" OUTSIDE . - - out- METAL| Flow | pipe j water| SYRA-
» N Rt ) . ' SIDE area | amea TION
- IHMEYEI . NUMBER : ) ) .t L

: ' per ft | ] sqin. | sqin. inches

" inches °

. A A Iy
"SLX. | .219{21.562| 4661T 5.76 | 5.65|14.99 | 365.1: ] 7.70 | 889 80.8:
- 5L 4| .281) 21.438| 4528T 576 | 5.61 {19.17 | 360.9% ] 7.68 | 1131 | 1028
8L U1 ,344]21.312{ 4397T 5.76 | 5.58 | 23.40 | 356.7 7.66 | 1373 | 1248
SLX | .406}21.188| 4270T 5.76 | 5.55 | 27.54 | 352.6 7.64 | 1606 | 146.0
22 . 5L . 0| .438{21.124{ 4206T 5.76 | 5.53 | 29.67 | 3505 7.63| 1725 | 156.9
_ 7 BLX .. | .469]21.062|4145T -6,76 | 5.51 { 31.72- | 348.4 7.61 11840 | 167.2
D =22.000 5L. | .562]20.876| 396sT 5.76 | 5.47 | 37.85 | 342.3 758 | 2177 | 1979
5L - | .688|20.624| 3777T 5.76 | 5.40 | 46.06 | 334.1 7.54 | 2619 | 238.1,
5L .812|20.376| 3512T 5.76 | 5.33 {54.05 | 326.1 . 7.50 | 3038 | 276.2|
5L .281} 23.438| 7073T 6.28 | 6.14 |20.94 | 431.5 8.39 | 1473 | 122.8)
24 5L .344 23.312| 688ST 628 | 6.10|2557 | 426.8 8.37 { 1789 | 149.1
5LX .406] 23.188| 6704T 6.28 | 6.07 | 30.09 | 422.3 8.34 | 2095 | 174.6
D = 24.000 5LX .469! 23.062| 6524T 6.28 | 6.04|3467 | 4177 8.32 | 2401 | 200.1
. 5L .812} 22.376| 5609T 6.28 | 5.86 | 59.15 | 393.2 8.20 | 3982 | 331.8
5L .250| 25.500{ 10.80M | 6.81 | 6.68 | 20.22 | 510.7 9.10 | 1677 128.9
5L, .281| 25.438] 10.70M | 6.81 | 6.66 | 22.70 | 508.2 9.09 | 1878 | 1445
26 5L 344/ 25.312]  10.40M | 6.81'| 6.63 | 27.73 | 503.2 9.07 | 2282 | 175.6
SLX .406125.188| 10.13M | 6,81 | 6.59 | 32.65 | 498.3 9.05 | 2674 | 205.7!
D = 26.000 SLX 469125062 9.89M | 6.81 | 6.56 | 37.62 | 493.3 9.03 | 3067 | 2359
: 5L .688|24.624)  9.05M | 6.81 | 6.45|54.71 | 476.22] 186.0 | 206.2 | 8.95 | 4%86 | 237
. SLX .250(27.500{ 15.70M | 7.33 ] 7.20 {21.80 | 594.0 74.1 12572 9.811| 2099 | 150
28 S5LX .281|27.438! 15.60M | 7.33 | 7.18 | 24.47 | 591.3 | 8322560 9.80| 22351 | 168
5LX .344/27.312) 1520M | 7.33 | 7.15|29.89 | 5859 | 101.6 | 253.7 | 9.78 | 2859 | 204
D = 28.000 5LX 406 27.188! 14.86M | 7.33 | 7.12|35.20 | 580.6 | 119.7| 2514 9.76 | 3351 | 239
5LX 469|27.062] 14.51M| 7.33 | 7.09 {40.56 | 575.2 | 1379 | 249.1 | 9.74| 3845 | 275
5LX .281129.438 22.11M| 7.85| 7.71 |26.24 | 680.6 | 89.2{294.7 | 1051 | 2897 | 193
30 5LX .344/29.312( 21.64M | 7.85 | 7.67 | 32.05 | 674.8 | 109.0 | 292.2 | 10.49 | 3525 | 235
5LX .406/29.188| 21.19M | 7.85 | 7.64|37.75 | 669.1 | 128.3 ] 289.7 | 10.46 | 4134 | 276
D = 30.000 5LX .469/29.062] 20,73M | 7.85 | 7.61 | 43.51 | 663.3 | 147.9 | 287.2 | 10.44 | 4746 | 316 |
SLX .250/31.500{ 31.01M| 838 | 8.25)|2494 | 779.3 | 84.8 | 337.4|11.23} 3143 | 196
32 S5LX .281/31.438) 30,71M | 8.38 | 8.23 {28.00 | 776.2 | 95.2{ 336.1 | 11.21 | 3523 | 220
5LX .34431.312)  20.10M | 8.38 | 8.19 {34.21 | 770.0 | 116.3 | 333.4 | 11.19 | 4287 | 268
D = 32.000 5LX .406131.188| 29.51M | 8.38 | 8.17 {4030 | 764.0 | 137.0 | 330.8 | 11.17 | 5030 | 314
5LX 469131.062| 28.92M | 8.38 | 8.13 | 46.46 | 757.8 | 158.0 | 328.1 | 11.15 | 5776 | 361
5LX .250133.500] - 42.91M | 890 | 8.77 {2651 | 881.4 | 90.1 | 381.6 {11.93 | 3775 | 222
34 5LX .281/33.438| 41.80M | 890 | 875 (29.77 | 878.2 | 101.2 | 380.3 | 11.92 | 4232 | 249
5LX .344/33.312] 41.02M | 8.90 | 8.72 | 36.37 | 871.5 | 123.7 | 377.4 | 1190 | 5152 | 203
D = 34.000 SLX .406{33.188| 40.26M | 8.90 | 8.69 | 42.85 | 865.1 | 145.7 | 374.6 | 11.88 | 6047 | 356
5LX 469|33.062] 39.50M | 8.90 | 8.66 |49.41 | 858.5 | 168.0 | 371.7 [ 11.86 | 6947 | 409
SLX .250{35.500| 56.38M | 9.42 | $.29 |28.08 | 989.8 | 955 |428.6 | 12.64 | 4487 | 249
36 5LX .281|35.438| 55.89M | 9.42 | 9.28 |31.53 | 986.3 | 107.2 | 427.1 | 12.63 | 5030 | 280
5LX .344135312{ 5491M | 9.42 | 9.25 | 38.53 | 979.3 | 1351.0 | 424.0 {12.61 | 6126 | 340
D = 36,000 SLX 40635.188] 53.95M | 9.42 | 9.21 {45.40 | 972.5 | 154.4 | 421.1 |12.59 | 7193 | 400
SLX 46935.062] 52.99M | 9.42 | 9.18 {52.35 | 965.5 | 178.0 | 418.1 | 12.56 | 8265 | 459
5LX 312037376 7294M | 9.95 | 9.79 | 36.94 [1097 125.6 | 475.0.| 13.33 | 6561 | 345
SLX 344(37.312| 72.32M | 9.95 | 9.77 | 40.70 (1093 138.4 | 475.3 | 13,31 | 7216 | 380
5LX .375{37.250| 71.72M | 9.95 | 9.75 | 44.33 {1089 150.7 | 471.5 113,30 | 7846 | 413
38 5LX 406137.188| 71.12M | 9.95 | 9.74 | 47.95 [1086 163.0 | 470.2 | 13.29 | 8474 | 446
SLX .438137.124| 70.51M | 9.95 | 9.72 |51.69 [1082 175.7 | 468.5 1 13.28 | 9119 | 480
D = 38.000 S5LX .469137.062| 69.93M | 9.95 | 9.70 | 55.30 {1078 188.0 | 466.8 {13.27 | 9741 | 513
S5LX .500{37.000| 69.34M | 9.95 | 9.69 {58.91 [1075 200.3 | 465.5 | 13.26 10359 | 545
S5LX .562136.876| 68.19M | 9,95 | 9.65 | 66.10 {1068 2247 | 462.4 | 13.24 11586 | 610
5LX .625]36.750| 67.03M | 9.95 | 9.62 | 73.39 |1060 249.5 | 459.0 | 13.22 12821 | €75
5LX .344139.312| 93.89M | 10.47 |10.29 | 42.86 1213 145.7 | 525.2 | 14.02 | 8427 | 421
S5LX .375139.250| 93.15M | 10.47 | 10.28 | 46.68 [1209 158.7 | 523.5 | 14.01 | 9165 | 458
5LX .406139.188| 92.42M | 10.47 | 10.26 | 50.50 |1206 171.7 | 522.2 | 14.00 | 9900 | 495
40 SLX .438139.124| 91.67M | 10.47 |10.24 | 54.44 [1202 185.1 | 520.5 | 13.99 {10655 | 533
SLX | .469{39.062] 90.94M | 10.47 {10.23 | 58.25 |1198 198.0 | 518.7 | 13.98 [11382 | 569
D =40.000 5LX .500(39.000| 90.22M | 10.47 | 10.21 | 62.05 [1194 211.0 | 517.0 | 13.97 12106 | 605
5LX .562|38.876| 88.80M | 10.47 | 10.18 | 69.63 1187 236.7 | 514.0 | 13.95 {13544 | 677
5LX .625{38.750| 87.37M | 10.47 | 10.15 | 77.31 {1179 262.8 | 510.5 | 13.92 {14991 | 750
5LX .406{41.188! 118.54M | 11.00 {10.78 | 53.05 |1332 180.4 | 576.8 | 14.71 11477 | 547
D = 42.000 5LX 469141.062| 116.76M | 11.00 | 10.73 | 61.19 {1324 208.1 | 573.3 | 14.68 {13198 | 629
48 5LX .406|47.188| 233.97M | 12.56 | 12.35 | 60.71 |1749 206.4 |'757.3 | 16.83{17194 | 716
D = 48.000 5LX .46947.062| 230.86M | 12.56 | 12.32 | 70.03 |1740 238.1 | 753.2 | 16.81 |19784 | 824

* T = THOUSANDS , VU= MILLIONS REF. P7



CHART -5

RELATIONSHIP BETWEEN PIPE DIAMETER, LENGTH,
AND VOLUME CONTAINED INSIDE

INSIDE LENGTH REQUIRED TO

DIAMETER HOLD 1000 BBL. BARRELS PER BARRELS PER

(in.) Miles Kilometers , MILE OF LINE KM. OF LINE
2.060 . 45.63  73.44 22 14
4.026 12,03 19.36 83 52
6.026 . 5.37 8.64 . 186 116
8.071 2.99 4.82 o 334 208
10.020 1.9 3.13° 515 320
12.090 1.33 2.15 750 466
24,000 0.34 0.54 2,954 1,836
~ 28.000 0.25 0.40 4,021 2,499
34.750 0.16 0.26 6,194 3,849
40.000 0.12 0.20 8,207 5,099
46.500 | - 0.09 0.15 11,090 6,891

L(mi) _ 194.965

=S V(/mi) = 5.129 D2
\ _ 313.766
L(km) = =—55—=2= V(/km) = 3.187 D2

("D" is in inches.)

REF. F5
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PIPELINE COATING SURVEY

Adag

e

_adinjs

R AR

is31. pod
e

R

up |

v

; w«.}u..w_vwﬂ;_rori_‘u:um

¥

Tape

Bonded
palyethylene

Thin-

Asphait

Asphait

Coai-~

1 1 L L. ) I il 1 1 | 1 L 1 1. | ( ] I
f=d (=] (=] < < (=3 f=d (=] o hld (=4 w f=2 vy © w1y L= oy =4 v
vy o el f ) Wy [~) oy (=] ~ vy o4 =3 ~ v o4 < ™~ vy o4
Lae] oy Ll o~ _— r— - — —
‘ul-g Japug uppy o N-g W-pT 13AQ

sinjog pagybrom

RATING

sopndwio jo saquiny

SIZES

enamel mastic film
powdered

tar
enamel

epoxy

REF. O\

Nnisow pydsy

Jpunua jpnydsy

auajhyjadjod papuog

Axoda pasapmod “wijy-upyy

adnj

|Swnua ny-|no)

1004

sapuoduio o saquiny

Us

iy o




PIPELINE COATING PROPERTIES

Significant factors for pipeline coatings

CHART 7-2

Factor

Type of coating
Poly-
ethylene

Epoxy

powder based

Asphait

Coal-tar
based

Thickness*”

Adhesion {initial)
Resistance to disbonding*
Upper service temperature”
Lower service temperature*t
Lower service temoerature*$§
Impact resistance™*

tmpact resistance”§
Elongationt

Elongation§

Tensile strength

Water permeability

Oxygen permeability
Resistance to biological attack
Abrasion resistance
Applicability:

Compatibility with concrete§
Pipelaying*t :
Pipeiaying~§

Field joint coatingT

Field joint coating$

Cathodic protection considerations*®

Performance records*+
Performance records*$

+-

OOO00CO0| | O OO0 +OQOOO0O0+ O+
00| O00FOO0O0O0O+ ++O+O0O0! | OO

+ 00 +F0000000OOO0 I OO0 00O

+

+00+0OO0OOOO+ 0000 OO0 | OO

*Selected factors of great importance. tPipeline without concrete weight coating, onshore. §Pipaline
with concrete weight coating, offshore.

Examples of published and estimated data for
some physical parameters for pipeline coatings

- Coating type
Praperty Asphalt Coal tar Epoxy powder  Poiyethyiene
Normal thickness, mm 3-7 for enamels; 3-7 0.3-0.5 2-4
13-20 for
mastics
Adhesion of newly applied
coatings, approx. figures, MPa 2 estimated >2 estimated 10-25 > 2
: . (peel values
onty)
Disbanding variable variable variabie susceptible
records - records records
Upper service temperature limit . .~ ) . : :
(max. operation}, °C. 60-80(907) 60-80(907) © 90-100(1207) 60-70
Lower service temperature
limit, °C. -25? -30? -40? -~ 40?7
Ultimate eiongation, i.e., at
break, % 2-5 2-5 2-6 500-600
5 estimated estimated .
Water vapor permeability,
107 %h " iem™! Torr~?! 1.2 1.4 0.3-1 0.06-0.3
(for a poly-
urethane tar)
Water penetration, % of
thickness not penetrated 80-100 45-100 25-80
Oxygen permeability, : .
10~ Yem2s—1 Torr—? 6 0.5-0.8 10-27
(for a poly- :
urethane tar)
{mpact resistance, Nm 2-8 e 4-88 35-50
Tensile strength, MPa 2 50 15
' estimated

REF. A\4



NACE CURRENT REQUIREMENTS AND ANODE CAPACITY

CAPRT 7-3

Current Requirements for Cathodic Protection®

Water Typical Current

Resistivity Reguirement
Area (ohm-cm) Temperature Turbulence ma/ft?
Gulf of Mexico 20 22 Moderate 5
U.S. West Coast 24 15 Moderate 7
Cook Iniet 50 2 Low 35
North Sea 25 12 High 10
Persian Gulf 15 30 Moderate 8
Indonesia ’ 19 24 Moderate 5
*NACE Standard — RP-01-76. Pg 11

Amp-Hour Capacity Of Anodes”

Anode

Amp Hr/lb
Aluminum — zinc — mercury 1250-1290
Aluminum — zin¢ — indium 760-1090
Aluminum — zinc — tin 420-1180
Zinc (MIL-A-18001 H) 379
Magnesium (H1) 5Q0

“NACE Standard — RP-01-76. Pg 11

REF. RO



CATHODIC

Composition of U.S.
Mil. Spec. 18001 H

Metal Compasition, %
Aluminum 0.10 to 0.50
Cadmium 0.025 to 0.150
Iron max. 0.005
Copper max. 0.005
Lead max. 0.006
Silicon max. 0.125
Zinc ‘Remainder

Potentials for
cathodic protection
of steel

Potentiat (v}
vs. Ag/AgCl/
ssawater refer-

Mstal/Environment ence eiectrode
Stee{ in aerobic environmest

+ positive fimit -0.80
 negative limit -1.05
Stesi in anaerobic environ-

ment

« positive fimit -0.90

« negative limit -1.08

Anode data for
buried pipeline

Anode Spacing (pipes/anode)
characteristics 2 4
Weight, kg 160 320
Outer diameter, m 0.70 0.62
Length, m 0.35 14

Anode data for
unburied pipeline

Anode Spacing (pipes/anode)
characteristics 3 8
Weight, kg 90 180
Outer diameter, m 0.64 0.5%
Length, m 0.30 1.20

PROTECT) oN

Composition of
modified zinc

anode

Metal ' Composition, %
Aluminum 0.1 10 0.2
Cadmium 0.03 t0 0.06
iron max. 0.002
Copper max. 0.005
Lead max. 0.006
Zinc Remainder

CHART 7-4%

Design capacities*

o [
N |

2'500

 ~for alominum: (At-Zneiny anodes..

Minimum design current densities (ma/m?) fo
cathodic protection of bare steel

Initial Mean Final

valus vaiue value
North Sea (northern) 160 120 100
North Sea (southern) 130 100 90
Arabian Guif 120 90 80
India 120 90 80
Australia 120 90 80
Brazil 120 90 80
Guif of Mexico 100 80 70
Western Africa 120 90 80
Indonesia 100 80 70
Pipelines (burial specified) 50 40 30
Risers in shafts with flowing seawater 180 140 120
Risers in shafts with stagnant seawater 120 S0 0
Saline mug (ambient temperature) 20 15

Current capacities found for aluminum anodes

in hot saline mud

Anode Test Current
Anode temperature, duration, capacity,
Publication (trade name) °C. months amp-he/kg
Houghton & Ashworth Gaivalum Hi* Ambient (0-20) 6 2,730
Galvaium ilI* 65-77 6/12 617/432
Ba 778t 65-77 6/12 428/538
Alanodes$ 65-77 6/12 | 348/-
Schrieber & Murray Galvatum [1t* Ambient 0.7-1.34 1984
Galvalum Hi* 38 0.7-1.3 1,984
Gaivatum 11" 60 0.7-1.3 1,323
Galvalum 111" 82 0.7-1.3 880
Jensen, Rygh & Setre Alanode$§ 80 1 I 466

*Galvalum is a trademark of The Dow Chemicail Co.

t8a 778 is a British Aluminium patented ailoy.

§Alanode is a Mitsubishi Metal Corp. patented alioy.

REF M9



WEATHER DATA CRART @-1

107 T T T L L R
104 b -
Annualized
{ number of
100 year
storm waves
100 -
104 1~ -1
10 (- —
Northern
ot North Sea  _|
Middie
North Sec
Southern
North Sea

10° — =

Guif of Mexico

Persian Guif

Malaysio
108 TR | I U B

Q 20 40 &0 80 100
Waove Height, Ft.
Annualized 100 Yeor Storm Waves

Design Criteria for 1060 Year Storm

Storm Case 1 2 3 4 5 [
Area Malaysia Persian Gulf of Southern Middle Northern
Gulf Mexico North North North
Sea Sea Sea
Maximum wave .. . . 33 35 39 50 75 100
height, ft. :
Maximum one minute 62 53 74 100 100 100
wind gust, knot
Design Severity
Compared To:
Malaysia =~ ... ... 1 0.92 1.15 1.56 1.83 2.08
Persian Gulf = . . .. 1.09 ] 1.25 1.70 2.00 2.27
Guif of Mexico . ... . 0.87 0.80 1 1.36 1.60 1.82
Southern North Sea .. 0.64 0.59 0.73 1 1.7 1.33
Middle North Sea ... 0.54 0.50 0.63 0.86 1 1.14
Northern North Sea .. 0.48 0.44 0.55 0.75 0.88 1

Annualized 100 Year Storm Wave Height Distribution
Wave Height, ft.

Number Persian Gulf of Scouthern Middle Northern
of Waves Malaysia  Gulif Mexico North Sea North Sea Neorth Sea
107 ... 4 4 4 4 4 4

108 ... ... .. 8 9 9 10 14 18

105 ... ... 12 13 14 17 24 31

104 ... ... ... 16 17 19 . 22 34 45

103 ... .. 21 22 24 30 44 59

102 ... ..., .. 25 248 29 37 55 73

100 L 29 30 34 44 65 86

100 .. ... 33 35 39 50 75 100

Note: Assumes one 30 minute maximum storm ot o single location in 100 years.

Rev. B2]



STRESS - STRAWN RELATIONS

Constructed stress-strain diagram
(L )
o
N Yield stress (f,) = 60 ksi
.80 =

-E 50‘_ L — //

;5 . 40 /% // 4/ A

fm 7 L / /

@ / 1 V4

£ a0 7Ny /

T / / /

: ; ,

/
/

ST Strain (e),. %.

Stress-average strain functions

- N
2 03
0.2
7 = ‘
<
Z 01
2 /Y i
0
0.4
= =i
- 03 !
s t=45-60ksi |
= T=1¢ +0.75 \\
= 1]
= 0.2
= g =1-0.75 /
"
= 0.1
0 o
0.6
7=t
0.5 "
. { = 45 ~ 60 ksi
= T= 0.625 + 0.833 ¢,
s 04 F=375 + 508
e 8 =127~ 0.75 \
% e = 0.0201 — 6.75
— 03
=
=2
70
Stress (f}, ksi
N =

CHART 8-2
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OPERATIONS GUIDELNES

Plastic work in suspended pipeline*

U reversal

96 degrees roll

i T T 2)
I &
NG
' Sl
5 | S22z,
P HEIEE R
= - SIRBSISE 2
L] au'ﬂz_lg
2 z|3E”
[¥7] E‘_‘E
S
\
i
No roil

|

"Atter dynamicaily indicad plastic stram at stinger:

180 degrees ron

0GJ J

Analyses chart for pipeline roll
-
180 , . )
170 - / -
Grade 60. f, = &0 ksi
160 -0, = 36in., 0, = 41.22 in. ~
150 L = 0.866 in., ty = 0.188 n,
L= 2.42 in. /7 / 7]
140 - W, = 883 ppf, W, = 90 opt
56 = 1.15
2 130 }= H = 210 & S -
RISE
9;; 120 |- §$ —_
=10 e
- ~
< 100 1 S, -
: owl ) {180
F R
k) L 0
z S 160 g
SR [ g @ —1 1403
o . -
60 - o« s THE
50 52 N P
40 2 k=, &
s21py + 15y % 2
i B -1 60 f«s
0 L Ry =l - 0.169) (461 Py + 133) | o
0 L A, = (f - 0.766) (5.53 Py +160) _| 2
Plastic 0 ! ] ! )
strain (g}, % Q 0.05 0.10 0.15 0.20 0.258
;",;‘}L (&) % 0.15 0.1 0.27 0.33 038 045
Stress {f), ksi 45 48 51 54 57 60
Load factor () 0.75  0.80  0.85 090 - 085 1.00
\. CGJ )

CHARY 8-3
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. STRESS — STRAUN  RELATIONS
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| - " | |
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HOUSTON, TEXAS

FRINTED IN U 5.4

L.LL. RIDGWAY COMPANY.  INC.

PLASTIC STR
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BEAM DIAGRAMS AND FORMULAS
For various static loading conditions

A\. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER

3 Equivalent Tabularload ., . . ., .
- P
R H—] h ig R=V . . . .00 0L
;A I2 M max.(at point of lbad) .....
Al .
e TS M= (wnnx<i) .....
Aamax. (at point of lcad) .....
Mmas.
L((rﬂ:fm-m Ax ( when x < —;— ) .....

Px
= “I3ET (31t —4x2)

B, BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT

{

}4*
i
4 4

(__—_N_—.i_—”

T

Shear

4—%«;1

h
>
Maa, /U/ Momant
P 2N

CENTER
Equivaient Tabular Load
]
i R=V . . . . ... ..
M max. (at canter and ends) .
4
Yr My (when x < -i‘) .....
amax, (:t center) ......
T
Mf"‘ Ax (when x < % .....
M maz, E

Px2
= 5gr Bl{—

C, SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

b ' Equivalent Tabular Load . = o
Pl X [ i
& R=V . . ... -
ITTTTT 2
RA& R !
Vx o v v e e el e e - (-—x)
1 1 ' 2
2 2
'r M max. ( at centar ) - —'L:—
¥
sn. )
onr l LY oM L -F a-x
F 5 wis
" “&/((ﬂ/ Amax, ( at center ) . - I8 ET
ax

Moment

wx
= TeET (I3~ 2ix2 +x3)

' D. BEAM FIXED AT BOTH ENDS—UNIFORMLY DISTRIBUTED

LOADS
Equivalent Tabulartoad ., . . .
R=V . . . . . . . ...
Vx

m max.( at ends )

My (at cuntcr)

e v My (steenter) L.l
L.2nal — Mx . . L v L 0. . e
—
PanifINNEN T*M‘ Amax. (at ccntar) ......
Maar, Y Moment \ man
L ax e e e e e e e

..........

- — 2 — X3
12(51:: I¢ 8x3)

- wit
384E1

wxd 2
= aer Y9
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PLASTIC

STRAWN

Stress
Vs,
strain

Strains

Stresses

Yield
distributions

»

PROGRESSION AND SWAPE FPCTORS
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Plastic bending of rectanguiar beom.

D
@
M
My
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8 10

Nondimensional moment—curvature relationship for rectangular beam.

20+ 4 Diamond 2.00
@ Round 1.70
150 /’ I Rectangle 1.50
M N
T O Tube 127
Y ’ Iw 114
1.0

L
w)’

Yariation in the shape factor for various cross-sectional forms.
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o PLASTAC . MOMENT. DERWATION ... _CHART )O-3
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o UMIFORMLY . LORDED , FIXED END BEAM . CHARTIO-M
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